Self-Organisation in Recurrent Neural Networks using Transfer Entropy
نویسندگان
چکیده
Oliver Obst, 2, ∗ Joschka Boedecker, 4 Minoru Asada, 4 and Mikhail Prokopenko CSIRO Information and Communications Technology Centre PO Box 76, Epping, NSW 1710, Australia School of Information Technologies, The University of Sydney, NSW 2006, Australia Department of Adaptive Machine Systems, Osaka University, Suita, Osaka, Japan JST ERATO Asada Synergistic Intelligence Project, Suita, Osaka, Japan
منابع مشابه
Improving Recurrent Neural Network Performance Using Transfer Entropy
Reservoir computing approaches have been successfully applied to a variety of tasks. An inherent problem of these approaches, is, however, their variation in performance due to fixed random initialisation of the reservoir. Self-organised approaches like intrinsic plasticity have been applied to improve reservoir quality, but do not take the task of the system into account. We present an approac...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کامل